### I modelli proposti # **Tester prova batterie** | | BT4560 | BT3563 | BT3562 | 3554 | |----------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------| | Settori di utilizzo | Linea di Produzione, Controllo<br>Qualità, Ricerca & Sviluppo | Linea di Produzione, Controllo<br>Qualità, Ricerca & Sviluppo | Linea di Produzione, Controllo<br>Qualità, Ricerca & Sviluppo | Manutenzione preventiva,<br>verifiche periodiche | | Applicazione tipica | Batterie Li-ion: verifica<br>dell'impedenza, grafico Cole-Cole<br>plot e analisi del circuito equivalente | Batterie ad alta tensione, pacchi<br>batteria di grande dimensione,<br>batterie per veicoli elettrici, batterie<br>di soccorso e per elettronica,<br>NiMH, Li-ion | Batterie di grande dimensione,<br>batterie per veicoli elettrici, batterie<br>di soccorso e per elettronica,<br>NiMH, Li-ion | Batterie di grande dimensione,<br>batterie per veicoli elettrici, batteri<br>di soccorso e per elettronica, NiMH,<br>Li-ion | | Misura a 4 terminali | • | • | • | • | | Portate di tensione | 1 portata: 5V | 3 portate: 6V-60V-300V | 2 portate: 6V-60V | 2 portate: 6V-60V | | Tensione Massima Ammessa | 5Vcc | 300Vcc | 60Vcc | 60Vcc | | Risoluzione in tensione | 10uV | 10uV | 10uV | 1mV | | Precisione base in tensione | ±0.0035% | ±0.01% | ±0.01% | ±0.08% | | Portate di resistenza | 3 portate: 3 - 10 - 100mΩ | 7 portate da 3m $\Omega$ a 3000 $\Omega$ | 7 portate da 3m $\Omega$ a 3000 $\Omega$ | 4 portate da 3m $\Omega$ a 3 $\Omega$ | | Risoluzione in resistenza | 0.1uΩ | 0.1uΩ | 0.1uΩ | 1μΩ | | Precisione base in resistenza | ±0.4% | ±0.5% | ±0.5% | ±0.8% | | Segnale di prova | da 0.1 a 1050Hz | 1kHz ± 0.2Hz | 1kHz ± 0.2Hz | 1kHz ± 30Hz | | Velocità di risposta | 0.1 secondi | 8 msec | 8 msec | 1 secondo | | Misura di temperatura | • | - | - | • | | Check in prova del buon contatto | • | • | • | • | | Funzione di azzeramento delle connessioni | • | • | • | • | | Funzione comparatore | • | • | • | • | | Funzione di calcolo statistico | - | • | • | - | | Memoria per le condizioni<br>di prova | 126 impostazioni | 126 impostazioni | 126 impostazioni | 200 impostazioni | | Memoria per i dati<br>misurati | - | 400 valori | 400 valori | 4800 set di valori | | Interfaccia EXT I/O | • | • | • | - | | Interfaccia RS232 | • | • | • | - | | Interfaccia USB | • | - | - | • | | Interfaccia GP-IB | - | su BT3563/01 | su BT3562/01 | - | | Uscita analogica<br>del valore di resistenza | - | su BT3563/01 | su BT3562/01 | - | | Software per computer | • | • | • | • | | Alimentazione | da rete | da rete | da rete | 8 batterie LR6 | # BT4560 Misuratore di impedenza specifico per batterie Li-Ion (ioni di litio), ad elevata precisione e stabilità di misura Li-lon (Lithium Ion) impedance meter with high accuracy and high measurement stability BT4560 esegue misure accurate e veloci grazie alla misura AC-IR che permette di evitare il processo di carica/ scarica della batteria per testarne l'impedenza interna. Misura AC-IR con frequenza di prova da 0.1mHz a 1050Hz e precisione base $\pm 0.4\%$ con risoluzione minima 0.1u $\Omega$ . Funzione di visualizzazione del grafico Cole-Cole plot (relazione dielettrica con diagramma di Nyquist) ed analisi del circuito equivalente. Interfacce USB, RS232 ed EXT I/O in dotazione. BT4560 performs accurate and fast measurements thanks to the AC-IR measure system that avoids the battery charging/discharging process to test the internal impedance. AC-IR measurement with test frequency from 0.1MHz to 1050Hz and basic precision $\pm$ 0.4% with a minimum resolution 0.1u $\Omega$ Display function graph Cole-Cole plot (Nyquist diagram dielectric relationship) and equivalent circuit analysis. USB, RS232 and EXT I/O interfaces included. # Incomparable Speed Exceptional Accuracy Unsurpassed Stability # Fast Low-frequency AC-IR measurement enables faster measurement # No need to charge/discharge Traditionally, the internal resistance of battery cells is measured by pre-charging the battery, then passing large currents and measuring the voltage drop (DC-IR measurement). Pre-charging the battery, however, usually takes several minutes to several tens of minutes. The BT4560 eliminates the need for charging or discharging by measuring the internal impedance at a low frequency of 1 Hz or below (AC-IR measurement), enabling significant reduction in the time required for measuring battery cells. #### Difference in speed Comparison of time taken to measure battery cell internal resistance DC-IR measurement (conventional method) Requires 20 to 30 minutes to around one hour, including charging/discharging AC-IR measurement (using BT4560) Requires around 10 seconds\* \* When measuring at a frequency of 1 Hz The BT4560 Battery Impedance Meter substantially reduces the time required for inspecting Li-ion battery cells by measuring at low frequencies, providing a fast and accurate measurement of the battery status. #### Accurate, stable measurements #### High reliability guaranteed through proven performance #### Measure very low impedance 3 m $\Omega$ minimum range with high noise suppression Accuracy: $\pm 0.4\%$ rdg. $\pm 8$ dgt.\* Minimum resolution: 0.1 $\mu\Omega$ \* When pure resistance is measured with measurement speed set to [SLOW] Compared to the current used by traditional battery testers, 0.1A, the BT4560 uses a current 15 times stronger, 1.5 A, which improves the S/N ratio. Enhanced noise suppression enables the device to provide reliable measurements for low-impedance batteries used for hybrid and plug-in hybrid vehicles. #### Circuit configuration highly tolerant of contact resistance The circuit configuration in the BT4560 is not susceptible to contact and wire resistance, enabling stable measurement. Probe cables of up to 4 m are supported, improving the flexibility of cabling in production lines. #### Measure DC voltage with high accuracy Voltage measurement accuracy comparable to high-end testers Accuracy: ±0.0035% rdg. ±5 dgt. Minimum resolution: 10 µV The BT4560 can measure the voltage much more accurately than traditional resistance meters(±0.01% rdg. ±3 dqt.). It guarantees highly accurate voltage measurement where greater accuracy than that of previous machines is required. #### Measure without damaging batteries The BT4560 employs AC-IR measurement with a small current load, enabling highly reliable measurement without damaging batteries. \* Contact your local Hioki distributor for details of the probe tip shapes by sliding a stopper. An alternative measurement method for inspecting charging/discharging output characteristics (DC-IR) [Low-frequency AC-IR measurement] #### Information obtained by low-frequency measurement #### Electrochemical characteristics of a battery and Cole-Cole plot Lithium ions move between electrodes through the electrolyte Measurement at low frequency reveals the reaction resistance of the battery #### Cole-Cole Plot #### Two-point measurement at high and low frequencies Traditional battery testers only record the electrolyte resistance of the battery by measuring it at a frequency of 1 kHz. Measurement at a low frequency of around 1 Hz, however, enables the tester to also observe the reaction resistance on the surface of the electrodes. The BT4560 assures the quality of battery cells by investigating both electrolyte resistance and reaction resistance with a two-point measurement at high and low frequencies. In this way, it helps to improve quality and extend the service life of lithium ion battery modules. #### Correlation between DC-IR measurement and low-frequency AC-IR measurement #### DC-IR measurement Method whereby a DC load is put through the battery, and the resistance is calculated from the voltage variation that occurs. #### **AC-IR** measurement Method whereby an AC signal is applied to the battery to measure its imped- \* Response derived from fast reactions Response derived from slow reactions When the correlation between DC-IR and AC-IR measurements is plotted using multiple Li-ion batteries .... A strong correlation is found between the measured values of DC-IR and low-frequency AC-IR. Useful as an alternative to DC-IR testing # Characteristics and features of BT4560 #### All-in-one compact unit The BT4560 requires no loading devices and provides measurements simply as a stand-alone unit, without having to establish a complicated measurement system. #### Self-calibration Correct any offset voltage and gain drift that may be present in the circuit to improve the accuracy of voltage measurement. #### Sample delay\* Specify a delay between AC voltage being applied and sampling being started so that measurement can start after the response stabilizes. #### Prevent charging or discharging when AC voltage is applied\* To prevent the battery that is being measured from charging or discharging, the battery impedance meter terminates the applied measurement signal when zero is crossed. #### Simultaneous measurement of impedance and voltage Reduce tact time by simultaneously providing impedance measurement and highly accurate DC voltage measurement. #### Slope correction function\* If measurement signals drift due to the battery characteristics or the input impedance of measurement instrument, the tester applies correction to the linear drift. #### Temperature measurement Reaction resistance measured at low frequency is sensitive to temperature. An optional temperature sensor measures the temperature around the battery and associates the results with data, thereby improving the reliability of the measurements. \*Functions available during impedance measurement #### Create Cole-Cole plots using bundled software The BT4560 comes with a free PC application that can be used for measurement and drawing Cole-Cole plots. You can also select the desired measurement frequency or export the measured values in text format. Measurement screen # Embed in automated machines and production lines #### Functions suitable for automated machines #### Contact check Monitor the contact resistance of the probe before and after measurement so that the measurement will only start when the measuring electrode on the probe is in contact with the object to be measured. #### Comparator Simultaneously measure impedance and voltage Output overall determination results Use the two-tone buzzer to indicate determination results #### Panel saving and loading Store up to 126 sets of measurement conditions in internal memory so that they can be called through EXT. I/O for future measurements. #### NPN/PNP switch Switch the input/output circuits for EXT. I/O according to the type of output: current sink output (NPN) or current source output (PNP). #### External control input/output terminal (EXT. I/O) | 21 | | 1/0 | | |-----|--------------|-----|------------------------------------------------------------------------------| | Pin | Signal name | I/O | Functionality | | 1 | START (TRIG) | IN | Starts measurement (external trigger) | | 2 | 0 ADJ_ALL | IN | All-zero adjustment | | 3 | STOP | IN | Stops measurement | | 4 | LOAD 1 | IN | Load number bit 1 | | 5 | LOAD 3 | IN | Load number bit 3 | | 6 | LOAD 5 | IN | Load number bit 5 | | 7 | Not used | - | - | | 8 | ISO_5V | - | Isolated power supply +5 V (-5 V) output | | 9 | ISO_COM | - | Isolated power supply common | | 10 | ERR | OUT | Measurement error | | 11 | RorZ_HI | OUT | Resistance determination result is Hi, impedance determination result is Hi | | 12 | RorZ_LO | OUT | Resistance determination result is Lo, impedance determination result is Lo | | 13 | V_IN | OUT | Voltage determination result is IN | | 14 | Xorθ_HI | OUT | Reactance determination result is Hi, phase angle determination result is Hi | | 15 | Xorθ_LO | OUT | Reactance determination result is Lo, phase angle determination result is Lo | | 16 | Not used | - | - | | 17 | Not used | - | - | | 18 | PASS | OUT | The determination result passed | | 19 | Not used | - | - | | 20 | 0 ADJ_SPOT | IN | Spot zero adjustment | | 21 | CAL | IN | Self-calibration | | 22 | LOAD 0 | IN | Load number bit 0 | | 23 | LOAD 2 | IN | Load number bit 2 | | 24 | LOAD 4 | IN | Load number bit 4 | | 25 | LOAD 6 | IN | Load number bit 6 | | 26 | Not used | - | - | | 27 | ISO_COM | - | Isolated power supply common | | 28 | EOM | OUT | End of measurement | | 29 | INDEX | OUT | Measurement reference signal | | 30 | RorZ IN | OUT | Resistance determination result is IN, impedance determination result is IN | | 31 | V HI | OUT | Voltage determination result is Hi | | 32 | V LO | OUT | Voltage determination result is Lo | | 33 | Xorθ IN | OUT | Reactance determination result is IN, phase angle determination result is IN | | 34 | Not used | - | | | 35 | Not used | _ | _ | | 36 | Not used | _ | _ | | 37 | FAIL | OUT | The determination result failed | | 51 | IAIL | 001 | The determination result falled | #### Impedance measurement accuracy $\circ$ 3 m $\Omega$ range (0.1 Hz to 100 Hz), 10 m $\Omega$ range, 100 m $\Omega$ range R accuracy = $\pm$ (0.004 |R| + 0.0017 |X|) [m $\Omega$ ] $\pm \alpha$ $X \text{ accuracy} = \pm (0.004 |X| + 0.0017 |R|) [m\Omega] \pm \alpha$ (The units of R and X are $[m\Omega]$ . $\alpha$ is as shown in the table below.) Z accuracy = $\pm 0.4\%$ rdg. $\pm \alpha (|\sin\theta| + |\cos\theta|)$ $\theta$ accuracy = $\pm 0.1^{\circ} \pm 57.3 \frac{\alpha}{Z} (|\sin \theta| + |\cos \theta|)$ ( $\alpha$ is as shown in the table below.) $\circ$ 3 m $\Omega$ range (110 Hz to 1050 Hz) R accuracy = $\pm$ (0.004 |R| + 0.0052 |X|) [m $\Omega$ ] $\pm \alpha$ X accuracy = $\pm$ (0.004 |X| + 0.0052 |R|) [mΩ] $\pm$ α (The units of R and X are $[m\Omega]$ . $\alpha$ is as shown in the table below.) Z accuracy = $\pm 0.4\%$ rdg. $\pm \alpha (|\sin\theta| + |\cos\theta|)$ $\theta$ accuracy = $\pm 0.3^{\circ} \pm 57.3 \frac{\alpha}{Z} (|\sin \theta| + |\cos \theta|)$ ( $\alpha$ is as shown in the table below.) | | | $3 \text{ m}\Omega$ range | 10 mΩ range | 100 mΩ range | | |-------------------------|------|------------------------------------------------------------------------------------------|-------------|--------------|--| | | FAST | 25 dgt. | 60 dgt. | 60 dgt. | | | α | MED | 15 dgt. | 30 dgt. | 30 dgt. | | | | SLOW | 8 dgt. | 15 dgt. | 15 dgt. | | | | | R: $\pm$ R accuracy $\times$ 0.1 / °C, X: $\pm$ X accuracy $\times$ 0.1 / °C, | | | | | Temperature coefficient | | Z: $\pm$ Z accuracy $\times$ 0.1/°C, $\theta$ : $\pm$ $\theta$ accuracy $\times$ 0.1/°C, | | | | | | | (Applied in the ranges of 0 °C to 18°C and 28°C to 40 °C) | | | | #### Accuracy graph Impedance accuracy excluding $\alpha \left(0.004|R| + 0.0017|X|,\, 0.004|X| + 0.0017|R|\right)$ Impedance accuracy excluding $\alpha (0.004|R|+0.0052|X|, 0.004|X|+0.0052|R|)$ #### Voltage measurement accuracy (when self-calibration is performed) | V | Display range | -5.10000 V to 5.10000 V | |-------------------------|-----------------------------------------------------------------------------------|-------------------------| | V | Resolution | 10 μV | | Voltage accuracy | FAST | ±0.0035% rdg. ±5 dgt. | | | MED | ±0.0035% rdg. ±5 dgt. | | | SLOW | ±0.0035% rdg. ±5 dgt. | | Temperature coefficient | ±0.0005% rdg. ±1 dgt. /°C (applied in the ranges of 0°C to 18°C and 28°C to 40°C) | | #### Temperature measurement accuracy v | Accuracy | ±0.5°C (measurement temperature: 10.0°C to 40.0°C)<br>±1.0°C (measurement temperature: -10.0°C to 9.9°C, 40.1°C to 60.0°C) | | |-------------------------|----------------------------------------------------------------------------------------------------------------------------|--| | | * | | | Temperature coefficient | Temperature coefficient: ±0.01°C/°C (applied in the ranges of 0°C to 18°C and 28°C to 40°C) | | #### BT4560 specifications (Guaranteed accuracy period: 1 year) | Measured signals | Impedance, voltage, temperature | | |-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--| | Impedance measurement | | | | Measurement parameters | R resistance, X reactance, Z impedance, θ phase angle | | | Measurement frequency | 0.1 Hz to 1050 Hz | | | Frequency setting resolution | 0.10 Hz to 0.99 Hz in 0.01-Hz increments<br>1.0 Hz to 9.9 Hz in 0.1-Hz increments<br>10 Hz to 99 Hz in 1-Hz increments<br>100 Hz to 1050 Hz in 10-Hz increments | | | Measurement ranges $3.0000 \text{ m}\Omega$ , $10.0000 \text{ m}\Omega$ , $100.000 \text{ m}\Omega$ | | | | Measurement current/DC load (DC load: offset current applied to measured object during impedance measurement | | | | | |--------------------------------------------------------------------------------------------------------------|---------------|-----------------|------------------|--| | | 3 mΩ range | 10 mΩ range | 100 mΩ range | | | Measurement current | 1.5 Arms ±10% | 500 mArms ±10% | 50 mArms ±10% | | | DC load current | 1 mA or less | 0.35 mA or less | 0.035 mA or less | | Measurement wave number | | FAST | MED | SLOW | |-------------------|---------|----------|-----------| | 0.10 Hz to 66 Hz | 1 wave | 2 waves | 8 waves | | 67 Hz to 250 Hz | 2 waves | 8 waves | 32 waves | | 260 Hz to 1050 Hz | 8 waves | 32 waves | 128 waves | | Measurement range | 5.00000 V (single range) | | |-------------------|--------------------------------------------------------------------------------------------------------------------|--| | Resolution | 10 μV | | | Measurement time | FAST : 0.1 s MED : 0.4 s * When self-calibration is performed, SLOW: 1.0 s 0.21s is added to the measurement time. | | #### Temperature measurement | Display range | -10.0 °C to 60.0 °C | |------------------|---------------------| | Resolution | 0.1 °C | | Measurement time | 2.3 s | | Measurement functions | $(R,X,V,T)/(Z,\theta,V,T)/(R,X,T)/(Z,\theta,T)/(V,T)$ | |------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Function | Comparator, self-calibration, sample delay, average, voltage limit, potential gradient compensation for impedance measurement, charge/discharge prevention during AC signal application, key lock, system test, panel saving and loading (up t o 126 condition sets) | | Measurement error detection | Contact check, measurement current error, voltage drift on measured object, overvoltage input, voltage limit | | Interface | RS-232C/USB (virtual COM port) * Cannot be used simultaneously Transmission speed: 9,600 bps/19,200 bps/38,400 bps | | EXT. I/O | TRIG, LOAD, Hi, IN, Lo, and others (NPN/PNP can be switched) | | Allowable input voltage | Up to 5 V | | Operating temperature and humidity range | 0 °C to 40 °C, 80% rh or less (no condensation) | | Storage temperature and humidity range | -10 °C to 50 °C, 80% rh or less (no condensation) | | Operating environment | Indoor, pollution degree 2, altitude up to 2,000 m | | Power supplies | Rated supply voltage: 100 to 240 VAC<br>Rated supply frequency: 50/60 Hz | | Rated power | 80 VA | | Dielectric strength | 1.62 kVAC, 1 min, cutoff current 10 mA (Between power supply terminal lump and protective ground) | | Applicable standards | Safety: EN61010<br>EMC: EN61326, EN61000-3-2, EN61000-3-3 | | Dimensions and mass | Approx. 330W × 80H × 293D mm (12.99W × 3.15H × 11.54D in), Approx. 3.7 kg (130.5 oz) | | Accessories | Power cord ×1, instruction manual ×1, zero-adjust-<br>ment board ×1, USB cable (A-B type) ×1, CD-R<br>(communication instruction manual, PC application<br>software, USB driver) ×1 | #### Instrument #### **BATTERY IMPEDANCE METER BT4560** Standard accessories · · · · · Power cord, Instruction manual, Zero-adjustment board, USB cable, CD-R #### **Options** CLIP TYPE PROBE L2002 Cable length : 1.5 m PIN TYPE PROBE L2003 Cable length: 1.5 m TEMPERATURE SENSOR Z2005 Cable length: 1 m RS-232C CABLE 9637 Cable length : 1.8 m